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Internal Diffusion-Limited Aggregation:
Parallel Algorithms and Complexity
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The computational complexity of internal diffusion-limited aggregation (DLA)
is examined from both a theoretical and a practical point of view. We show that
for two or more dimensions, the problem of predicting the cluster from a given
set of paths is complete for the complexity class CC, the subset of P charac-
terized by circuits composed of comparator gates. CC-completeness is believed
to imply that, in the worst case, growing a cluster of size n requires polynomial
time in n even on a parallel computer. A parallel relaxation algorithm is presented
that uses the fact that clusters are nearly spherical to guess the cluster from a
given set of paths, and then corrects defects in the guessed cluster through a
nonlocal annihilation process. The parallel running time of the relaxation algo-
rithm for two-dimensional internal DLA is studied by simulating it on a serial
computer. The numerical results are compatible with a running time that is
either polylogarithmic in n or a small power of n. Thus the computational
resources needed to grow large clusters are significantly less on average than the
worst-case analysis would suggest. For a parallel machine with k processors, we
show that random clusters in d dimensions can be generated in O((n�k+
log k) n2�d ) steps. This is a significant speedup over explicit sequential simula-
tion, which takes O(n1+2�d ) time on average. Finally, we show that in one
dimension internal DLA can be predicted in O(log n) parallel time, and so is in
the complexity class NC.
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1. INTRODUCTION

Internal diffusion-limited aggregation (DLA) is a cluster growth process in
which particles start at one or more sources within a cluster, diffuse out-
ward, and are added to the cluster at the first site outside it they reach.(16)

By reversing figure and ground, we can see this as a hole being hollowed
out by particles which remove sites from a surrounding material; therefore,
this process is sometimes called anti-DLA or diffusion-limited erosion(24, 14)

and has been used to understand electrochemical polishing. Internal DLA
is also equivalent to the problem of a viscous fluid displacing an inviscid
one in a porous medium.(37, 38) If we add particles at a finite rate, rather
than one at a time, Gravner and Quastel(9) prove that the hydrodynamic
limit is the one-phase Stefan problem,(25) which has been used as a model
of a solid melting around a heat source. The purpose of this paper is to
explore the computational complexity of simulating internal DLA.

Internal DLA has quite different properties from its better known
cousin, ordinary DLA,(40) in which particles diffuse in from infinity until
they touch, and stick to, a growing cluster of sites. Clusters grown in this
way have a dendritic structure, and have been used to model dielectric
breakdown,(33) electrochemical deposition, (2) viscous fingering, (34) snowflake
growth,(35) the growth of vascular networks,(8) watershed formation, (22)

neuron growth, (12) and other phenomena.
While DLA tends to amplify irregularities in the cluster's boundary,

internal DLA tends to smooth them out. For instance, in Fig. 1 we show
a growing cluster at size 100, 1600 and 25600, and it is clearly tending to
a circular shape. Lawler, Bramson and Griffeath(16) showed in any number
of dimensions that the asymptotic shape of an internal DLA cluster with
a single source at the origin is spherical. Formally, let Adrd be the volume
of a d-dimensional ball of radius r. Then they showed that with proba-
bility 1, for any =>0, the cluster with Adrd particles contains the ball of

Fig. 1. Internal DLA clusters with 100, 1600, and 25600 particles. Unlike ordinary DLA
clusters, these have a circular shape.
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radius r(1&=) centered on the origin, and is contained within the ball of
radius r(1+=), for sufficiently large r.

We can ask what the fluctuations in the boundary are, and define an
roughness or interface width ! where !2=( (r&r� )2). Lawler(17) showed
that in two or more dimensions, ! scales at most as r1�3 up to logarithmic
corrections. For d=1 the probability distribution of clusters can be solved
exactly, (16) and !tr1�2 for clusters of size n=2r.

Krug and Meakin(14) have studied anti-DLA interfaces using non-
rigorous but presumably exact methods. Their theory applies to a line of
sources and an asymptotically flat interface, but their results should also
apply to the point source and spherical interface of internal DLA. They
show that the interface width ! scales with the length of the interface L as
log1�2 L for d=2 and goes to a constant value for d>2. These results are
supported by two-dimensional and three-dimensional simulations.(14, 24)

We have performed simulations of internal DLA clusters in two
dimensions of size up to n=105, with 100 trials each. The average radius
r� of a point on the boundary converges very quickly to - n�?, the radius
of the circle with area n. As shown in Fig. 2, the deviation !2 seems to grow
only logarithmically with r, in agreement with ref. 14. Fitting a plot of
( (r&r� )2) vs. log10 r� gives a slope of 0.36 log10 r� =0.16 ln r� .

From the scatter in Fig. 2, it's clear that it would be nice to have data
for more trials and larger clusters. However, since each cluster has n walks,
and since each one has length proportional to r2 where rtn1�d, the time it
takes to explicitly simulate the system on a serial computer is Ttnz where
the dynamical exponent(32) z=1+2�d. In two dimensions, z=2 as shown in

Fig. 2. A plot of the deviation ( (r&r� )2) vs. log10 r� , for n up to 105.25 averaged over 100 tri-
als each. Deviations from circulatory seem to grow only logarithmically with r.
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Fig. 3. A log�log plot of the computation time T for explicit simulation on a serial computer
vs. the cluster size n for n ranging from 102 to 104, averaged over 100 trials each. The straight
line shows that the dynamical exponent is very close to 2.

Fig. 3. This places an upper limit on the size of clusters we can generate,
given limited computational resources.

In this paper, we will discuss to what extent parallelization can help us
generate internal DLA clusters more quickly than explicit simulation, both
in the worst case and on average. On the way, we will show that the
natural computational problem associated with internal DLA is complete
for a particular class of circuits, making it one of the few known complete
problems for this class.

We are interested in these questions for two reasons. On a practical
level, to the extent that parallel computation becomes a reality, fast algo-
rithms will help us perform numerical experiments on larger systems. More
philosophically, we believe that the computational difficulty of predicting a
system is a good measure of ``physical complexity,'' and that the complexity
class a system belongs to says something fundamental about its dynamics.
If a system is highly contingent on its past, we have to simulate it explicitly,
while if this dependence is in some way sparse, we may be able to skip over
much of its history. In our opinion, this is a fundamental distinction
between dynamical systems akin to integrability vs. chaos. We hope that by
answering these questions for many systems, we will build a set of intuitions
about the relationships between complexity, dynamics, and computation.

The paper is organized as follows. In Section 2 we introduce the basic
notions of parallel complexity theory, including P, NC, and PRAMs. In
Section 3 we define comparator circuits and the class CC, and show that
predicting internal DLA clusters in CC-complete. Section 4 gives the most
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efficient algorithm we have found for internal DLA, based on guessing the
cluster shape and then correcting this guess through a non-local annihila-
tion process.

While this algorithm is very attractive, it requires a parallel computer
with a number of processors that grows polynomially in the size of the
cluster. Using an equivalence between parallel and sequential versions of
internal DLA given in Section 5, in Section 6 we derive an efficient algo-
rithm for the more realistic case in which our computer has a fixed number
of processors. In Section 7 we show that the one-dimensional case can be
solved in logarithmic time, and in Section 8 we conclude. Finally, we give
two additional algorithms in the Appendix that may be of some interest.

2. PREDICTION AND COMPUTATION

Given a physical system, how much computational effort does it take
to predict it? Must we simulate it step-by-step, or is it possible to compress
its history, and predict its behavior for t time-steps on a parallel computer
with a computation time significantly less than t? Computational com-
plexity theory gives us a vocabulary to talk about questions like these.

Computational complexity theory (see e.g., ref. 36) is the study of the
resources needed to solve problems and, more specifically, how these
resources increase as the problem size increases. Computational resources
must be measured with respect to a specific model of computation. Hap-
pily, complexity theory is rather robust, in the sense that superficially
different models of computation lead to the same hierarchy of complexity
classes. In this work we are primarily interested in parallel computation,
and the two models of parallel computation we will use are Boolean circuit
families and parallel random access machines (PRAMs). A Boolean circuit
is a feedforward network of gates, typically AND, OR and NOT gates,
although we will also consider a more restricted set of gates below. Unless
otherwise noted, AND and OR gates have two inputs or ``fan-in'' two.
Boolean circuits may be arranged in levels such that all gates in a single
level may be evaluated simultaneously and the output of a given level is the
input of the next level. Two common complexity measures for Boolean
circuits are width and depth. Width is the largest number of gates in a level
and depth is the number of levels. The size of a circuit is the total number
of gates in it, which is at most its width times its depth.

To solve a problem where the number of input bits varies, we need a
family of circuits, with one circuit for each problem size n. Such a family
is uniform if there is a simple procedure which, when given n as input,
produces the circuit for n-bit inputs. (The meaning of ``simple procedure''
varies but the technical details are not important here.) The complexity
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Table I. Some Complexity Classes Defined by the Scaling of Size and Depth
in a Boolean Circuit Family

Class Size Depth Comments

NCk nO(1) O(logk n)
NC nO(1) logO(1) n
CC nO(1) nO(1) comparator gates
P nO(1) nO(1)

NP 2nO(1)
O(1) unbounded fan-in gates

class a family belongs in then depends on how the size and depth of its
members grows as a function of n. Table I summarizes a number of com-
plexity classes defined for uniform circuit families.

Two of the most important complexity classes are P and NC. P is the
class of problems that can be solved by uniform families of Boolean circuits
whose size is at most polynomial in n, while NC is the subset of P con-
sisting of problems that can be solved by families of circuits of polynomial
size and polylogarithmic depth.3 P is also the class of problems that can be
solved in polynomial time by a serial computer such as a Turing machine.
Within NC are the nested subclasses NCk of problems that can be solved
by polynomial size circuits of depth logk n where n is the problem size.

The PRAM model of parallel computation is closer in design to real
parallel computers. A PRAM is composed of many processors with distinct
integer labels all connected to a shared memory. Processors run con-
currently and all run the same program. All processors can read and write
to a shared memory in unit time, an assumption that cannot hold in the
physical world as the number of processors is scaled up. Since each time
step of a PRAM computation can be thought of as a layer in a circuit
which depends on the output of the previous layer, the parallel time and
the number of processors correspond roughly to the depth and width of a
circuit, respectively. Thus NC is the set of problems that can be efficiently
parallelized, i.e., solved in polylogarithmic time by a PRAM with a poly-
nomial number of processors.

Note that a PRAM requires a number of processors that grows with
the size of the problem, which may make it an impractical model of parallel
computation. Below, we also discuss the more realistic case where the
number of processors is fixed.

Consider the following problem, called Circuit Value: given a descrip-
tion of a Boolean circuit composed of AND, OR and NOT gates, and the
truth values of the inputs, what is the truth value of the output? Clearly we
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can answer this by going through the circuit layer-by-layer until we get to
the output, so Circuit Value is in the class P. In fact, it is the hardest
such problem in the sense that any other problem in P can be reduced to
it in a simple way, and it is therefore P-complete.(10)

The problem of computing the parity of n bits, on the other hand, can
be solved in O(log n) parallel time. Just XOR pairs of bits, then pairs of
pairs, and so on for Wlog2 nX steps. This puts parity in the class NC1 of
problems that can be solved by a Boolean circuit of logarithmic depth and
polynomial (in this case, linear) width.

Just as computer scientists believe that NP-complete problems cannot
be solved in polynomial time, they believe that P-complete problems can-
not be parallelized to polylogarithmic time. If any P-complete problem can
be, then so can any problem in P, and P=NC, which would be almost as
surprising as if NP=P. In other words, P-complete problems are believed
to be inherently sequential, so that much of the work has to be done
step-by-step, and even polynomially many processors cannot speed up the
computation very much.(10)

In fact, predicting a number of physical problems has been shown to
be P-complete, for d�3 in some cases and d�2 in others. These include
ordinary DLA and fluid invasion, (19, 21) the Ising model, (21, 27) sandpile, (26)

FHP and HPP lattice gases, (28) cellular automata with local voting
rules, (27) and simple deterministic growth models.(11) Greenlaw et al.(10)

have pointed out that predicting cellular automata is P-complete in
general, since cellular automata exist (e.g., ref. 18) which can simulate
universal Turing machines. On the other hand, NC algorithms exist for
Eden growth, (20) the Lorentz lattice gas, (31) and cellular automata with cer-
tain algebraic properties.(29, 30)

Even if a speedup to polylogarithmic time isn't possible, we might still
hope for a polynomial speedup��predicting physical time t in O(t:) parallel
time for some :<1. For instance, in ref. 32 it was shown that though
ordinary DLA is P-complete, on average it can be parallelized to O(n:)
time where : is related to the cluster's fractal dimension. To explore these
finer distinctions, Condon(4) introduced the idea of strict P-completeness,
which can be used to put a lower bound on : unless all problems in P have
a polynomial speedup. Moore and Nordahl(28) discussed the strict P-com-
pleteness of predicting lattice gases, and the same analysis could be applied
to many of the problems listed above.

3. COMPARATOR CIRCUITS

When discussing Boolean circuits, we usually take for granted that we
can fan out a wire by splitting it into as many copies as we like. This allows
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Fig. 4. Our notation for comparator gates.

the output of one gate to be used as the input in an arbitrary number of
others. Mayr and Subramanian(23) considered circuits where wires cannot
be split except when this is allowed explicitly by a gate, e.g., one with one
input and two outputs. In particular, they considered the class CC of
circuits whose only gates are comparators, which have two inputs and two
outputs. One output is the minimum (AND) of the inputs, and the other
is their maximum (OR). We notate these as in Fig. 4.

These circuits are incapable of fanout; in particular, they cannot
simulate, by restricting some of their initial values, a gate with more non-
constant outputs than inputs. Mayr and Subramanian(23) show that this is
true if and only if it is true for each individual gate in the circuit, and they
call this property being scatter-free. Because of this lack of fanout, the com-
parator circuit value problem is believed not to be P-complete. In fact, such
circuits can be evaluated fairly quickly, using an algorithm we will now
describe.

Comparator gates have the property that knowing either of their
inputs tells us what one of their outputs are. If either input is 1, then their
maximum is 1, and if either input is 0, then their minimum is 0. Moreover,
in both cases the other output is simply the other input. This means that
any one of the W inputs to a comparator circuit determines the values of
all the wires along some path connecting it to one of its W outputs, and
the value of this output, leaving us with a new comparator circuit of width
W&1. If the circuit has depth D, this path can be found in O(log2 D)
parallel time, since finding the transitive closure is in NC2 (or in fact in its
subset NLOGSPACE of nondeterministic logarithmic space(36)).

Repeating this algorithm for each input shows that comparator circuits
of width W and depth D can be evaluated in O(W log2 D) parallel time.
More generally, by parallelizing the process of using different inputs to
simplify the circuit, Mayr and Subramanian showed that a circuit of
N<WD gates can be evaluated in parallel time O(min(W, D) log2 D)�

O(- N log2 N ), since each simplification step reduces both the width and
the depth by at least one. Thus a polynomial speedup to N 1�2 is always
possible. On the other hand, there is no known algorithm for speeding up
the evaluation of comparator circuits to polylog time and it is believed that
NC and CC are incomparable.

We now show that CC circuits and internal DLA are intimately
linked. Say that a particle is active if it is still moving within the cluster, i.e.,
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if it has not yet stuck to the outside of the cluster because all the sites it
has visited so far were already occupied. The input for our problem will be
a list of moves (t, i, s), one for each time 0�t<T, indicating that at time
t particle i, if it is still active, will visit site s. Given such a list, Internal
DLA Prediction is the problem of predicting the set of occupied sites and
the set of active particles at time T. Note that this definition is quite
general, allowing for arbitrary topologies, multiple sources, and many
particles moving at once. Then we have

Proposition 1. Internal DLA Prediction is in CC.

Proof. For each time t, define Boolean variables activet(i) for each
particle i and occupiedt(s) for each site s. Then the effect of a move (t, i, s)
is simply that of a comparator gate with inputs activet(i) and occupiedt(s),
and outputs activet+1(i) and occupiedt+1(s):

occupiedt+1(s)=occupiedt(s) OR activet(i)

activet+1(i)=occupiedt(s) AND activet(i)

This converts the list to a comparator circuit of size T and width n+m,
where n is the number of particles and m is the total number of sites named
in the list. The outputs occupiedT (s) and activeT (i) give us the set of
occupied sites and active particles at time T. K

Conversely, any comparator circuit can be reduced to an internal
DLA problem on a square lattice with one particle at a time, of a size and
time polynomial in the size of the circuit. Thus even this restricted version
of the problem is CC-complete:

Proposition 2. Internal DLA Prediction on a square lattice is
CC-complete, even when restricted to one particle at a time.

Proof. We will use sites of the cluster to store truth values, with
occupied and unoccupied sites representing true and false wires respec-
tively. However, the same site will represent two different wires at different
times. Our basic tool is the walk shown in Fig. 5, in which a particle comes
from the origin and moves down a horizontal conduit. It steps off the con-
duit to visit site a, continues to b if a is already occupied, and continues
to a previously unoccupied site c if b is already occupied. If t and t$ are
times before and after this walk, the effect on occupied(a), occupied(b)
and occupied(c) is as follows:
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Fig. 5. A walk that implements a comparator gate. After the walk, a will be occupied no
matter what, b will be occupied iff either a or b were, and c (which was unoccupied before)
will be occupied iff both a and b were.

occupiedt$(a)=1

occupiedt$(b)=occupiedt(a) OR occupiedt(b)

occupiedt$(c)=occupiedt(a) AND occupiedt(b)

Thus if the old values of occupied(a) and occupied(b) are the inputs to
a comparator gate, the new values of occupied(b) and occupied(c) are its
outputs.

If a comparator circuit has N gates, it has at most 4N wires, which
need at most 3N sites to represent their inputs and outputs. If we place
these sites contiguously along a row adjacent to the conduit the particles
use, and if the origin is at one end of this conduit, each walk takes at most
3N+6 steps, and the total time for N such walks is O(N 2). K

Examining Propositions 1 and 2, we can see why internal DLA is
CC-complete rather than P-complete. While sites can be used to store bits,
these bits cannot be sensed by the particles without being erased��an unoc-
cupied site becomes occupied as soon as a particle touches it, and this par-
ticle then disappears. Thus the system cannot make multiple copies of the
truth value represented by a site, and fanout is impossible. In comparison
to this, collisions are more like NOR gates in ordinary DLA,(19) and like
Fredkin gates in the Reversible Aggregation model of D'Souza and
Margolus.(7)

In addition to evaluating comparator circuits, other CC-complete
problems include certain network stability problems and finding the
lexicographically first maximal matching in a graph.(23) While both NC
and CC lie between NLOGSPACE and P, their apparent incomparability
suggests that parallelizability and a lack of fanout are two very different
properties.

Given Proposition 1 and a supply of random bits, we can use Mayr
and Subramanian's algorithm to grow random clusters. Specifically, for any
=>0 there is a parallel algorithm that produces a random cluster of size n
in d dimensions with probability 1&= and runs in O(n logd (n�=) log2 n)
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parallel time. This is less efficient than the algorithm given in the next
section, but since the analysis is somewhat instructive, we include it in
Section A of the Appendix.

4. A PARALLEL RELAXATION ALGORITHM

In this section we describe a parallel relaxation algorithm for generat-
ing internal DLA clusters. The first step in the procedure is to create an
ordered list of the n particles' random walks. After the walks are chosen,
all we need to know is how far each particle moves along its walk before
it finds an unoccupied site and sticks there. We call this the sticking point
or label of that particle.

Call a configuration well-ordered if for every particle, there are no
labels of later particles along the path between the origin and its label. Call
a configuration singly-occupied if no sites in the cluster are empty or have
more than one label, so that every cluster site is the sticking point of
exactly one particle. There is a unique well-ordered, singly-occupied con-
figuration, and this corresponds to the cluster that would have been
produced by adding the particles, one at a time according to the defining
sequential dynamics. The idea of the relaxation algorithm is to start with a
reasonable initial configuration that is well-ordered but not singly-
occupied, and then to move particles' labels forward and backward along
their paths until it is singly-occupied as well.

Using the fact that clusters are very nearly spherical, it is easy to
create an initial configuration that is well-ordered and approximately
correct by placing the label of the i th particle at the first point on its walk
where it reaches the radius of a sphere of volume i. This gives a spherical
cluster of volume n where some sites are occupied by more than one label,
and other sites have none. We refer to multiply occupied sites as piles of
pebbles, one pebble for each excess label, and unoccupied sites as holes. We
then move the particle's labels in such a way that the number of pebbles
and holes decreases monotonically while keeping the configuration well-
ordered.

We begin with a description of the algorithm and its implementation
on a PRAM. We then report on simulations of the algorithm that show
that its running time increases very slowly with the cluster size.

4.1. Description of the Relaxation Algorithm

The first step in the algorithm is to generate, in parallel, a list of n
paths. Path i is an ordered list of distinct sites ri (1), ri (2),..., ri (i), and
corresponds to the i th walk in the sequential dynamics. The sticking point
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or label of path i is at step {i and position si=ri ({i ). Paths are constructed
by generating random walks, which can be done by a PRAM with a supply
of random numbers in polylogarithmic time. Since only the first visit of
each walk to each site matters, we compact the walks to eliminate multiple
visits to a site.

To correctly simulate the sequential dynamics, the sticking points
must satisfy the property that for every path i and for every time t�{i

there is exactly one path j such that j�i and sj=ri (t). This insures that the
walk i arrives as si by moving within the already existing cluster and that
no two walks stick at the same site. The well-ordering property is the
weaker property that, for all walks i and j and all t<{i , if sj=ri (t) then
j<i.

Let us call the initial segment of a path up to and including its label
the live segment of the path. A lattice site is live if it is live for at least one
path. The cluster S is the set of live sites. Note that this definition means
the cluster may include unoccupied sites, which we call holes. The perimeter
of the cluster is the set of all sites that are not part of the cluster but are
neighbors of cluster sites.

The initial configuration of labels should be close to the typical spheri-
cal configuration and must be well-ordered. The expected radius of the i th
walk's sticking point is (i�Ad )1�d where Adrd is the volume of a sphere of
radius r in d dimensions, so we place the label for the i th walk at the first
site along it whose distance from the origin is greater than this. This can
be carried out in polylog time by PRAM by calculating the radius of each
site, and ensures the well-ordering property as well.

To quantify the deviation from the correct configuration, we assign an
energy to a list of paths and their sticking points. Let m(r) be the number
of labels at position r and let S be the set of live positions (the cluster). The
energy E is

E= :
r # S

|m(r)&1| (1)

Note that the correct configuration has energy zero and all other well-
ordered configurations have energy greater than zero.

The algorithm consists of moving labels forward and backward along
the walks. Assuming that the current configuration is well-ordered, we say
that moving the label of walk i from position si and time {i to s$i and {$i is
allowed if the resulting configuration is also well-ordered.

For every site in the cluster we will define a hole index and, if the site
is occupied, a pebble index. The pebble index is the highest label at a site,
and the hole index is the lowest label of all the walks that are live there.
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A site where m(r)>1 is multiply-occupied, the m(r)&1 excess labels
there are called pebbles, and the pebble index points to the pebble with the
highest label, i.e., the label of the last particle to stick at the site in our
current guess. A site where m(r)=0 is called a hole, and the hole index tells
us the first particle that crosses it in our current guess. Note that pebble
and hole indices are both defined at singly-occupied sites.

We will use two types of moves, pebble moves and hole moves. A pebble
move consists of moving the pebble index at a given multiply-occupied site
outward along its path until it reaches either (1) the perimeter of the
cluster, (2) an occupied site with an even higher pebble index, or (3) a hole
with a higher hole index. We will call the first such site, moving outward
from its current position, its destination. The destination is the new sticking
point for the particle. The idea is that this particle should not have stuck
at its current site; since this site was already occupied, it should have
continued on to the first unoccupied site on its path.

A pebble move preserves the well-ordering property, and does not
increase the energy. If the destination is a hole, the pebble and the hole are
annihilated, and the energy decreases by two. If the destination is on the
perimeter, the pebble is annihilated, a new site is added at the perimeter,
and the energy decreases by one. Finally, if the destination is a site with a
higher pebble index the energy is unchanged.

We can perform many pebble moves in parallel, by determining all the
pebbles' destinations and moving them there simultaneously. This might
result in two particles being placed on the same site, but the well-ordering
property is still preserved, and the energy is never increased. In fact, we can
do more than this in parallel. If a pebble's destination is a singly-occupied
site with a higher pebble index, a new pebble with that higher index is
created by the move; the new pebble, in turn, might have a singly-occupied
destination with a yet higher pebble index, and so on. Thus a series of
pebbles can cascade outward until the last one falls in a hole or sticks at
the perimeter.

We can carry out an entire cascade of this kind in one, polylog time,
parallel step. For each occupied site there is a pebble index and a destina-
tion site where that pebble index would move if the site were multiply-
occupied. The directed bonds connecting the pebble indices of occupied
sites and their destinations form a directed forest of potential pebble moves.
In a single pebble sweep, we move some of the pebble indices in this forest
to their destinations. The pebble indices that are moved are the ones that
can be reached in this directed forest from a multiply-occupied site and are
thus part of the cascade of pebble moves. Determining the forest of pebble
moves and moving the pebbles to their destinations can be done in a
O(log2 n) time by a PRAM using graph reachability.(36)
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A hole exists because one or more particles cross a site as if it were
occupied, even though no particle is said to stick there in our current guess.
The hole index tells us the label of the first such particle to do so. There-
fore, a hole move consists of moving that particle's label inward along its
path to fill the hole; since that site was unoccupied when it got there, it
should have stuck there instead.

A hole move is always allowed and does not increase the energy. If the
moved label was at a multiply-occupied site the energy decreases by two.
If the moved label was at a singly-occupied site, it creates a new hole there,
leaving the energy unchanged (since some other particle relied on that site
being occupied in order to cross it) unless that site is just inside the
perimeter, in which case it is removed from the cluster and the energy
decreases by one.

We will perform a hole sweep of many hole moves in parallel. We can
have cascades of hole moves just as with pebble moves, in which a hole
created by moving a label from a singly-occupied site is filled in turn by a
particle from another singly-occupied site, and so on. In general, there is a
forest of hole moves where some particles are indexed by the hole indices
of more than one hole. In this situation, we move the particle to fill the
hole at the earliest time along its path, and the other holes go unfilled until
a later sweep.

In each sweep of each kind, at least one pebble (the outermost along
its path) or at least one hole (the innermost) will be removed. Since there
are no more than n pebbles and holes in the initial configuration, and since
each sweep can be performed in polylogarithmic time by a PRAM, the
running time is no worse than O(n logk n). However, since many pebbles
and holes are typically annihilated in a single sweep we expect much better
performance than this from the algorithm on average, and this is borne out
by the numerical results in the next section.

We conclude this section with a discussion of the processor requirements
of the algorithm. The usual algorithm for graph reachability, which we use to
determine cascades of pebble and hole moves, involves repeatedly squaring
the adjacency matrix of a directed graph, and takes N 3 processors on a
graph of size N. Since the graph in question consists of the n sites of the
cluster itself, our algorithm needs O(n3) processors to carry out pebble or
hole sweeps in polylogarithmic time. In fact, we can reduce this somewhat
by using more sophisticated methods for parallel circuit multiplication.(13)

4.2. Simulations of the Relaxation Algorithm

Our algorithm consists of alternating pebble sweeps and hole sweeps
until the energy is zero, at which point the cluster is in the correct configuration.
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How many steps are required to do this? To explore this question we
simulated the relaxation algorithm on a serial machine, and measured the
average number of sweeps as a function of cluster size.

The simulation is carried out using two data structures, one represent-
ing the lattice sites and the other representing the walks. Stored with each
lattice site is its pebble index, hole index and the total number of walks
sticking at the site.

It would require O(n2�d+1) memory, far too much, to store the full
trajectories of n walks. Therefore, we trade time for memory, and define
each walk by a four byte integer that is the seed for a linear congruential
random number generator. The walk is generated as needed using the
random number generator initialized by this integer pathname. The linear
congruential random number generator takes an integer and produces a
new integer. Thus, the pathname of the walk is a function of the step along
the walk and the walk can be generated outward from any point where the
current pathname is known by application of the random number gener-
ator. The data stored for each walk is its pathname at the origin and its
pathname, time and position at its current sticking point. In addition, the
pathname and time associated with the hole label at each lattice site is
stored with each lattice site.

Given this data structure it is straightforward to simulate pebble and
hole sweeps without actually determining the forests of pebble and hole
moves. For a pebble sweep, all the sites of the lattice are visited in order.
If a site is multiply-occupied and the pebble index of the site has not yet
been moved, this label is moved outward along its path to its destination,
which may create a new multiply-occupied site. The algorithm cycles
through the lattice until no further pebbles are moved. For a hole sweep,
all the sites of the lattice are visited in order. If a site is a hole then the par-
ticle corresponding to its hole index is moved to the site, which may create
a new hole. This process is continued until no further holes are moved.
After each sweep we also update the pebble and hole indices of each site.
One step of the algorithm consists of a pebble sweep, an update of the
site information, a hole sweep and another update of the site information.
A single step of this sequential simulation corresponds to polylogarithmic
parallel time on a PRAM��however, given the amount of effort to do all
this, this is certainly not the best way to grow internal DLA clusters on a
serial computer!

We have run sequential simulations of the relaxation algorithm for a
series cluster sizes from 10 through 40960. To check the algorithm, we con-
firmed that the clusters obtained from the relaxation algorithm are exactly
those obtained from the sequential dynamics for the same walks ordered by
index. We measured how the energy decays to zero as a function of the
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Table II. The Average Number of Steps (T)
for the Relaxation Algorithm to Reach the

Correct Configuration Versus Cluster Size n

n (T ) n (T )

10 1.25 1280 6.22
20 1.81 2560 7.35
40 2.40 5120 8.58
80 3.01 10240 10.009

160 3.77 20480 11.49
320 4.45 40960 13.37
640 5.29

number of steps and calculated the average number of steps for the algo-
rithm to converge as a function of cluster size. Table II shows the average
number of steps required by the algorithm to reach the correct configura-
tion as a function of the cluster size n and Fig. 6 plots the data. In the left
panel of the Figure, the data is presented as a semi-log plot and on the
right panel as a log�log plot. Neither curve is straight, which suggests a
slowly varying function between log n and a power of n. The best fit for
n�160 to the form a+bnz yields z=0.18. For the same range of n, the
best fit to the form a+b log: n yields :=1.6. Both fits are reasonably good
on this limited range of n, so we cannot say for sure whether the
asymptotic behavior is polynomial or polylogarithmic. However, if it is a
polynomial, a power of 0.18 is unusually small. It should be noted that
even if the asymptotic behavior is polylogarithmic, the actually running
time on a PRAM would have an additional polylogarithmic factor, giving
a larger value of :, since each step of the algorithm itself requires
polylogarithmic parallel time.

Fig. 6. The number of the steps (T ) for the relaxation algorithm to converge vs. cluster size
n for n in the range 10 to 40960. The left panel is a semi-log plot and the right panel is a
log�log plot.
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Fig. 7. The energy as a function of the number of steps, averaged over 100 trials, for clusters
of size 4 } 104, plotted both semi-log (on the left) and log�log (on the right). While the data
shows an s-curve, which in the text we argue shows three regimes of the relaxation process,
the relatively straight line on the left seems to indicate that the energy is decreasing exponen-
tially in the number of steps.

Figure 7 shows the energy as a function of the number of steps,
averaged over 100 trials, for clusters of size 4 } 104. The curve is close to a
straight line on the semi-log plot but shows a slight ``s'' shape, which we
believe is related to the existence of three regimes in the dynamics. Figure 8
shows snapshots of the system as the algorithm converges to a correct
cluster of size 2500. In the first regime (steps 0�2 in Fig. 8) there is a high
density of pebbles and holes and these annihilate one another locally, giving
an exponential decrease in the energy. In the middle regime (step 3) pebbles
and holes are separated into domains, and annihilation occurs mainly at the
boundaries between these and at the perimeter of the cluster. In the final
regime (step 4) the energy again decreases rapidly when almost all pebbles
and holes are independently annihilated at the perimeter is a few steps.

Because the middle regime is the slowest and does not become well-
developed until n is large, it is difficult to extract the asymptotic behavior
of the running time of the algorithm from the numerics even at relatively
large values of n. If this regime is similar to local diffusion and annihilation
processes in the plane where particles of opposite type separate into
domains, then we would expect the energy to decrease as a power-law func-
tion of time.(39, 3) However, since our moves are non-local the particles
don't have to take the time to diffuse to each other, and the data in Fig. 6
and Fig. 7 suggests that the decay may in fact be closer to exponential.

5. COMMUTATIVITY AND PARALLEL VS. SEQUENTIAL
GROWTH

While the algorithm of the previous section works very well on massively
parallel computers, we also want fast algorithms for the more practical case
where our parallel computer has a fixed number of processors. To do this,
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Fig. 8. A cluster of size 2500 after 0, 1, 2, 3, 4 steps and its final shape after 6 steps. Pebbles,
holes and singly-occupied sites are black, white and grey, respectively.

in this section we will show the surprising fact that a wide variety of
versions of internal DLA, ranging from adding one particle at a time to
adding them all at once, all produce the same probability distribution of
cluster shapes.

Diaconis and Fulton(6) showed that internal DLA has a remarkable
kind of commutativity. If we have a probability distribution P of cluster
shapes, and we define Tx(P) as the new distribution resulting from adding
a particle with initial position x, then Tx(Ty(P))=Ty(Tx(P)) for any sites
x and y. In other words, if we add two particles with two initial positions,
it doesn't matter which order we add them in.

Their proof is quite general, and does not rely on the topology of the
lattice or any particular set of transition probabilities between sites. It relies
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on the fact that the particles only interact when the one starting at x is
added to the cluster at a site s, and the one starting at y passes through s
to another site t. The probability of this is

P(x � s) P( y � s) P(s � t)

This is symmetric in x and y, since the walk from s to t can just as easily
be taken by either particle once the other one has occupied s. This com-
mutativity does not hold for standard DLA, on the other hand, because
particles block each others' paths rather than facilitating them.

Closely related to commutativity is parallelizability.4 If we start two
particles at the same time and run them in parallel, by the time the first one
is deposited at a site s, the other one will be exactly as likely to be at any
given position as it would be if it were released sequentially after the first
one completed its walk, with the one caveat that the number of steps it
takes the second particle to reach s must be greater than or equal to that
the first particle took. For pairs of walks where this inequality is violated,
we can swap these parts of the particles' walks.

To prove this formally, let P(S+x+ y) be the probability that adding
two particles at the origin increases a cluster S by two sites x and y. Call
P(x w�S y) the probability that a particle starting at x sticks to a new
site y, and P(x w�St y) the probability that a particle starting at x visits y for
the first time after t steps. For bookkeeping purposes we will use subscripts
P1 and P2 to show which particle takes which path, but of course the prob-
ability doesn't depend on this.

If we release the two particles sequentially, we have

P(S+x+ y)=P1(0 w�S x) P2(0 ww�S+x y)+P1(0 w�S y) P2(O ww�S+ y x)

Taking one of these and separating it into terms counting non-interacting
walks and interacting ones gives

P(S+x+ y)=P1(0 w�S x) P2(0 w�S y) (non-interacting)

+P1(0 w�S x) P2(0 w�S x) P2(x ww�S+x y) (interacting)

+(x � y)
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=2P(0 w�S x) P(0 w�S y)

+P(0 w�S x)2 P(x ww�S+x y)

+P(0 w�S y)2 P( y ww�S+ y x)

(here (x � y) indicates the corresponding terms with x and y switched).
If instead we release the two particles at the same time, let's assume

that particle 1 sticks at x and particle 2 sticks a y. As before, we separate
P(S+x+ y) into an interacting and a non-interacting part. The interacting
part can be divided into terms depending on which particle sticks first. In
the first set of terms particle 1 sticks at time t1 , and particle 2 first visits x
at some time t2�t1 and then travels from x to y. In the second set of
terms, particle 2 sticks at time t2 , and particle 1 first visits y at some time
t1>t2 and then travels from y to x. Note that t1=t2 is included in the first
set of terms, since if both particles reach x at the same time, by convention
we deposit particle 1 and keep particle 2 active.

Then for the parallel case we have

P(S+x+ y)

=P1(0 w�S x) P2(0 w�S y) (non-interacting)

+\ :
t1�t2

P1(0 w�S
t1

x) P2(0 w�S
t2

x)+ P2(x ww�S+x y) (1 sticks first)

+\ :
t1>t2

P1(0 w�S
t1

y) P2(0 w�S
t2

y)+ P1( y ww�S+ y x) (2 sticks first)

+(x � y)

=2P(0 w�S x) P(0 w�S y)

+\ :
t1�t2

+ :
t1>t2

+ (P1(0 w�S
t1

x) P2(0 w�S
t2

x)) P2(x ww�S+x y)

+\ :
t1�t2

+ :
t1>t2

+ (P1(0 w�S
t1

y) P2(0 w�S
t2

y)) P1( y ww�S+y x)

=2P(0 w�S x) P(0 w�S y)

+P(0 w�S x)2 P(x ww�S+x y)

+P(0 w�S y)2 P( y ww�S+ y x)
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This is the same as the expression derived above for the sequential case,
and so we get the same probability distribution whether we release the
particles sequentially or in parallel.

Lawler, Bramson and Griffeath(16) give the following general argument,
which works for any number of particles. Suppose we choose a random
walk for each particle in advance. Each potential site in the cluster is
visited by many different particles. We can consider a variety of protocols
for determining which particle visits that site first and sticks there, while
the other particles remain active. Some obvious protocols are

�� Sequential growth, where each particle has an index indicating the
order in which it was released, and we attach the particle with the lowest
index.

�� Parallel growth, where we attach the particle that visits this site
earliest in its walk, using the index to break ties.

�� A mix of these, where particles are released in a series of waves or at
various times.

Each such protocol defines a growth model, and all such models are
equivalent, as long as these protocols depend only on the past, i.e., on the
part of the particles' walks that precedes their visit to the site in question.
There are two main ingredients to the proof. First, if the protocol depends
only on the past then the future of each particle's walk is free of correla-
tions with the fate of the others. Second, past sections of different particles'
walks can be swapped with each other as we did in the two-particle case
to transform a run under one protocol into a run under another.

One such protocol, which adds a shell of constant thickness to the
cluster at each step, leads to a reasonably fast parallel algorithm. It
requires O(n1+2�d ) processors, and grows random clusters of size n in d
dimensions in time O(n1�d log n). While it is inferior to the algorithm of
Section 4, it is conceptually much simpler. We give it in Section B of the
Appendix.

It is interesting to draw an analogy between the commutativity of
internal DLA and the ``Abelian'' property of sandpile models, especially
considering that the algorithm of Section 4 is reminiscent of toppling and
burning algorithms for sandpiles (e.g., ref. 5). We are indebted to one of the
anonymous referees for pointing this out.

6. PRACTICAL PARALLELISM:
A FIXED NUMBER OF PROCESSORS

While the parallel algorithms given in Section 4 and the Appendix are
interesting, they are impractical given the current state of parallel computing
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technology. They rely on a polynomially growing number of processors, all
of which have access to a shared memory. Communication delays make it
difficult to build shared-memory machines with many processors, as
opposed to distributed-memory machines where each processor has a local
cache. To date the largest shared-memory computers have 16 processors,
although computers that simulate shared memory with a nonuniform cost
for access have been built with many more. At the time of this writing, the
largest CC-NUMA (cache coherent non-uniform memory access) computer
is ASCI Blue Mountain at Los Alamos, with 6144 processors.

In this section, we aks a more practical question: how much can we
speed up an internal DLA simulation, specifically for generating random
clusters, if we have a shared-memory computer with k processors? We
will assume we have a concurrent-read, priority concurrent-write (CRCW)
machine. In a CRCW PRAM, each processor has an index. Two or more
processors can read the same bit from memory simultaneously, but if they
attempt to write to the same bit, only the processor with the lowest index
is allowed to do so.

Then using the equivalence between sequential and parallel growth
models that we showed in the previous section, we have the following:

Proposition 3. Given a supply of random bits, a CRCW PRAM
with k processors can generate a random internal DLA cluster with n
particles in d dimensions in average time O((n�k+log k) n2�d ).

Proof. Using the k processors, we keep k particles active at any given
time, all moving in parallel. Whenever one or more reaches an unoccupied
site, the particle on the processor with the lowest index is deposited there,
the other particles remain active, and that processor starts a new particle
at the origin. As we showed above, this will give us the same probability
distribution of clusters as if we added particles one at a time.

Since each processor adds n�k particles on average, the mean time for
each processor to complete its task is (n�k) t� where t� =O(n2�d ). However,
the running time of the algorithm is the time it takes the last processor to
finish, which is at most (n�k) t� plus the length of the last particle's walk.
Since these times are distributed with an exponential tail e&t�t� for large t,
and since the average maximum of k things distributed with probability
P(t)=(1�t� ) e&t�t� is

t� :
k

i=1

(1�i)r(#+log k) t�
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where # is Euler's constant, the last processor finishes in average time.

T=(n�k+log k) t� =O((n�k+log k) n2�d )

as promised. K

Since the derivative of n�k+log k is negative for all k�n, it pays to
add as many processors as we can; for n large enough that n>>k log k,
we get a speedup linear in k, which is a parallelizable as possible. If we
have a massively parallel computer after all, we can set k=n, assign each
particle to its own processor, and get the following corollary:

Corollary. Given a supply of random bits, a CRCW PRAM with
O(n) processors can generate a random internal DLA cluster of size n in d
dimensions in average time O(n2�d log n).

This corollary gives a middle ground between the algorithm of
Proposition 6 in the Appendix, which is faster but requires O(n1+2�d )
processors, and that of Proposition 3, which is slower but requires only a
constant number. This is a nice example of the tradeoff between computa-
tion time and the number of processors.

We simulated this algorithm on a serial computer for d=2, and found
the same deviations from a circle as in Fig. 2 within experimental error. In
Fig. 9 we show the running time of the algorithm in parallel steps, which
is simply the length of the longest walk. Taking 100 trials each for n

Fig. 9. The running time of the parallel algorithm given by the Corollary to Proposition 3.
We plot the time divided by n vs. log10 n ranging from 102 to 105.25 and averaged over 100
trials each. Since this is a straight line, the running time grows as n log n.
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ranging from 102 to 105.25, we find that the running time does in fact scale
as n log n.

7. AN NC ALGORITHM FOR INTERNAL DLA IN d=1

Many problems which are difficult in two or more dimensions are easy
in one. We will show in this section that a form of Internal DLA Prediction
is in NC for one-dimensional lattices. This is not very surprising, since the
probability distribution of clusters is exactly solvable in one dimension(16)

but it is good to have such a result for the record.

Proposition 4. Internal DLA Prediction on a linear chain with
one particle at a time can be solved by a PRAM with O(n2) processors in
O(log n) time, and so is in NC.

Proof. In one dimension, the lattice sites are the integers and the
cluster is a line segment [&L, R]. Initially, L=R=0. Each particle's walk
is a mapping that increases either L or R by one, by adding a particle at
the left or right end of the cluster. Thus, the history of the cluster can be
represented by a directed path starting at the origin in one quadrant of a
two-dimensional square lattice where the x and y coordinates represent L
and R respectively.

For each particle, we have a list of sites it will visit. The first step in
the algorithm is to convert this list to a mapping on the square lattice, that
is, a table of entries [&L, R] � [&L$, R$] where [&L$, R$] is either
[&L&1, R] or [&L, R+1], depending on whether &L&1 or R+1 first
appears in that particle's list. Since L and R are bounded by n, this table
has length O(n2). We can do this conversion in O(log l ) parallel time with
O(n2l ) processors where l is the length of the particle's walk. If neither &L
nor R appears in a particle's list then [&L$, R$]=[&L, R] and that
particle is not incorporated into the cluster.

We then calculate the composition of all these maps by composing the
maps of consecutive pairs of particles, then composing these pairs, and so
on. This takes O(log n) parallel time and can be done by O(n2) processors,
one for each entry in the map. The final state of the cluster is this com-
posed map applied to the initial state [0, 0]. K

As a corollary, given a supply of random bits we can generate random
one-dimensional clusters in O(log n) parallel time. In addition, the kind of
composition process used in the proof can be carried out by a computer
with O(log n) memory, and so is in LOGSPACE/NC2.(36)
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It is interesting that internal DLA on a linear chain can be predicted
in NC while slight variations of this system are CC-complete. For example,
on a comb graph, where a linear chain has an additional site attached to
each site on its ``backbone,'' we can simulate any comparator circuit as in
Proposition 2 by using the backbone as our conduit. (Similarly, by collaps-
ing the conduit to a single site, we see that internal DLA is also CC-com-
plete on a star graph where n sites radiate from a single central site.) None-
theless, from the perspective of statistical physics, the linear chain and the
comb should be in the same universality class. For instance, fluctuations in
the boundary should scale as n1�2 in both cases.

This situation is familiar from spin glasses, where adding a second layer
to a two-dimensional square lattice changes the problem of finding the
ground state from P to NP-complete, (1) even though the universality class
presumably remains the same. The lesson is simply that it is possible to
make a problem more difficult computationally while remaining in the
same physical universality class.

8. CONCLUSION

We have explored the computational complexity of internal diffusion-
limited aggregation. We have shown that, unlike ordinary DLA, it cannot
make multiple copies of the bits stored on the sites, and so it is CC-com-
plete rather than P-complete. It's pleasing to find that a ``natural'' problem
in physics is complete for a relatively little-known class of circuits. We also
showed that the sequential version of the problem is in NC for a linear
chain, even though it is CC-complete on closely related lattices.

We introduced a parallel relaxation algorithm in which we guess a
reasonable configuration for the cluster, and then update this with a non-
local annihilation process. While our numerical measurements are not
definitive, the parallel running time for this algorithm grows either poly-
logarithmically in the cluster size n or as a very small power. If it is the former,
then we have a nice case of a physical system that can be predicted in NC
on average, even though it is CC-complete in the worst case. It is tempting
to think that a similar type of algorithm could be of use in predicting other
growth models.

Since the parallel relaxation algorithm requires a number of processors
which grows polynomially as a function of system size, it is unrealistic
given the current state of parallel computing. In the more realistic case
where we have a shared-memory computer with a fixed number k of pro-
cessors, we used the equivalence between sequential and parallel growth
models and the fact that random clusters are roughly spherical to show
that we can obtain a speedup which is linear in k for k log k<<n.
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The best parallel algorithm known for ordinary DLA(32) works by
adding to the cluster, in each parallel step, the largest possible group of
walkers that do not interfere with one another. The same approach can be
used for internal DLA and is described in Appendix B. Although this algo-
rithm is less efficient than the parallel relaxation algorithm it is interesting
to compare its performance for ordinary and internal DLA. Its running
time for two-dimensional internal DLA is roughly - n parallel steps since
a shell of unit thickness can be added in each step. For two-dimensional
ordinary DLA the running time is na with ar0.74. The difference between
these running times reflects the fact that all perimeter sites are likely growth
sites in internal DLA whereas only a small fraction of perimeter sites are
likely growth sites in ordinary DLA.

APPENDIX A. USING CC TO GROW RANDOM CLUSTERS

In this section, we show how Mayr and Subramanian's algorithm for
comparator circuits can be used to grow random clusters. While this is not
the best algorithm, the proof is somewhat instructive.

Proposition 5. Given a supply of random bits, for any =>0 there
is a parallel algorithm that produces a random internal DLA cluster of size
n in d dimensions with probability 1&= and runs in O(n logd (n�=) log2 n)
parallel time.

Proof. We can convert td random bits into the coordinates of a
d-dimensional random walk of t steps in O(log t) parallel time, since the j th
coordinate is the sum of the first j moves. We then add particles one at a
time, by letting our list of moves be a concatenation of walks, one for each
particle. Note that the particles will not actually take these walks; they will
only take them as long as they are active, i.e., until they reach an unoc-
cupied site.

Since in time k2�d a particle will reach the boundary of a d-dimensional
sphere with k sites, the probability of the k th particle still being active after
t steps has an exponential tail of the form e&t�k2�d

, and the probability of
some particle still being active at the end of its walk is at most n times this.
Setting this equal to = tells us that we can ensure with probability 1&= that
no particles are left active at time T by giving the k th particle a walk of
length

t=k2�d log(n�=)�n2�d log(n�=)
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Using the construction of Proposition 1 gives a comparator circuit of depth

T<n1+2�d log(n�=)

and with n+m where m is the total number of sites named in the walks.
We then use Mayr and Subramanian's simplification algorithm to evaluate
this circuit.

In the worst case where every walk heads away in a different direction
from the origin as fast as it can, m is proportional to T, and the simplifica-
tions algorithm runs in time O(T log2 T ), no better than explicit simula-
tion. However, m is almost always significantly less than T, making this
circuit narrower than it is deep. In particular, since the probability of a
particle being at a site a distance r from the origin after t steps is roughly
t&d�2e&r2�t, a crude union bound shows that the probability of any particle
reaching any site r from the origin in t steps is at most

P(r)�nt1&d�2rd&1e&r2�t

Setting this equal to = tells us that with probability 1&=, all the particles
are confined to a ball of radius

r��t log
nt1&d�2

=
�n1�d log(n�=) (2)

which is in the crossover regime for multiple random walkers studied in
ref. 15. The volume of this ball is

m�n logd (n�=)

and the simplification algorithm works in time

O((m+n) log2 T )�n logd (n�=) log2 n

plus smaller corrections. The two sources of possible error�failing to have
all the particles' walks terminate, or having some walker exceed the radius
in Eq. 2��both have probability =. By rescaling these to =�2, we can keep
the total probability of error below =. K

In fact, this algorithm may run considerably faster, since Mayr and
Subramanian's analysis of their algorithm's running time is based on the
worst-case scenario that each simplification step reduces the width and
depth by only one. We can expect somewhat better performance on a ran-
dom comparator circuit with N gates and width W whenever W<N<W 2.
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Since N=T, Wtm, and Ttm1+2�d, this is the case here for d>2. We
leave this more detailed analysis to the reader.

APPENDIX B. SHELL PARALLEL ALGORITHM

In this section, we give a simple parallel algorithm that adds a shell of
constant width to the cluster at each step. This is equivalent to sequential
or parallel growth by the remarks at the end of Section 5.

Proposition 6. Given a supply of random bits, a CRCW PRAM
can produce a random internal DLA cluster of size n in d dimensions in
O(n1�d log n) time with O(n1+2�d ) processors.

Proof. First we generate, in advance, the paths of all n walkers; this
can be done in parallel time O(log n) as in the algorithm of Section 4. We
then grow the cluster in a series of shells. At each step we take the current
cluster S and determine, in parallel, what site outside S each active particle
hits first, which is where it will stick if no other particle gets there first. We
then look at the set of particles at each sticking point, attach the one with
the lowest index, deactivate it, and keep the other particles active. We
repeat this with the new cluster, and continue until there are no active par-
ticles left.

In the early stages, the cluster will be diamond-shaped, since almost
every site at its perimeter becomes occupied at each step. Later on, it
approaches its final shape which is roughly spherical, and every site on the
perimeter has a roughly equal probability of becoming occupied. Thus each
step adds a shell of constant thickness, and the algorithm will grow a
cluster of size n in O(n1�d ) steps. Finding the first sticking point of a walk
of length O(n2�d ) can be done in O(log n) parallel time with O(n2�d ) pro-
cessors, so doing this for all n particles takes O(n1+2�d ) processors. Finding
the particle with the lowest index at each sticking point can be done in
O(log n) time with just O(n) processors. Therefore, the total running time
is O(n1�d log n), and the number of processors we need is O(n1+2�d ), which
is polynomial in n. K

This is an adaptation of the parallel algorithm for ordinary DLA given
in ref. 32 to internal DLA. There are two differences that radically reduce
the computation time. First, in ordinary DLA particles can block each
others' paths, so we have to check for interactions and throw away all but
a non-interacting set. In internal DLA, on the other hand, we can treat all
the particles in an almost independent way since the sequential and parallel
dynamics are equivalent, so we can use all the walks at once and none of
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our processor time is wasted. Secondly, the size of an internal DLA cluster
increases linearly with the number of steps since it is roughly spherical,
whereas in ordinary DLA growth is concentrated at the cluster's protrusions.
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